
Computer Science for 
Biology (algorithmic primer)



Overview of Quiz 0
Note: I grabbed these stats last night, so the 
distribution may have changed by this morning.
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Key knowledge: Every DAG has a topological 
order — a way you can visit the nodes so that 
when you see a node, you’ve already seen every 
node that has an edge to it.



Overview of Quiz 0

Key knowledge: Every DAG has a topological 
order — a way you can visit the nodes so that 
when you see a node, you’ve already seen every 
node that has an edge to it.

One can find a topological order for a DAG in 
linear O(V+E) time.

Given the topological order, shortest path can 
easily be computed in O(V+E) time.



Overview of Quiz 0
I am given two coins, which I will flip simultaneously. 

Let X = H be the event that the first coin comes up heads and X = T be 
the event that the first coin comes up tails. Let Y = H and Y = T be defined 
similarly for the second coin. 


If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and 
Pr(X=H, Y =T)=0.05.


What is Pr(X=T, Y =T)?

C1\C2 H T

H 0.25 0.05

T 0.5 ?
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I am given two coins, which I will flip simultaneously. 

Let X = H be the event that the first coin comes up heads and X = T be 
the event that the first coin comes up tails. Let Y = H and Y = T be defined 
similarly for the second coin. 
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Prob of all possible 
events must sum to 1

(unitary)
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Overview of Quiz 0

I am given two coins, which I will flip simultaneously. 

Let X = H be the event that the first coin comes up heads and X = T be 
the event that the first coin comes up tails. Let Y = H and Y = T be defined 
similarly for the second coin. 


If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and 
Pr(X=H, Y =T)=0.05.


What is Pr(X = T)?
C1\C2 H T

H 0.25 0.05

T 0.5 0.2 0.7

0.3
The marginal prob.

is the sum over all 

joint states where 

X has this value.



Are the two coin flips statistically independent (say why or why not)?

I am given two coins, which I will flip simultaneously. 

Let X = H be the event that the first coin comes up heads and X = T be 
the event that the first coin comes up tails. Let Y = H and Y = T be defined 
similarly for the second coin. 


If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and 
Pr(X=H, Y =T)=0.05.


Overview of Quiz 0



Are the two coin flips statistically independent (say why or why not)?

I am given two coins, which I will flip simultaneously. 

Let X = H be the event that the first coin comes up heads and X = T be 
the event that the first coin comes up tails. Let Y = H and Y = T be defined 
similarly for the second coin. 


If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and 
Pr(X=H, Y =T)=0.05.


Overview of Quiz 0

No: X and Y are statistically independent iff 
P(X=x,Y=y) = P(X=x)*P(Y=y)



The program grep allows one to quickly find a target pattern in a file. In 
practice grep works quickly by using a combination of a well-engineered 
implementation, and an efficient algorithm for pattern search. Assume that 
you are given a large string T representing the file and a string P 
representing the pattern the user wishes to find.

 

What algorithm might you use to search for the pattern P in T ?


What is the running time of your algorithm in terms of |T | and |P | (the 
lengths of strings T and P, respectively)?

Overview of Quiz 0

Many possible answers, but an efficient algorithm will 
be linear in the length of the input O(|T|+|P|), we will 

learn about such algorithms next week.



What is Computer Science?

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG


What is Computer Science?
Not actually simple to define constructively 

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to 
computation and its applications. It is the systematic study of the 
feasibility, structure, expression, and mechanization of the methodical 
procedures (or algorithms) that underlie the acquisition, representation, 
processing, storage, communication of, and access to information* …

*http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf


What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

It turns out that a major challenge in 
bioinformatics will simply be determining how to 
frame the computational problem corresponding 
to a biological question in a well-posed and 
meaningful way!



Input DNA

Reads Reference genome

+

Assembly

X
How to assemble 
puzzle without the 
benefit of knowing 
what the finished 
product looks like?

Next 5 slides courtesy of Ben Langmead



Assembly

Whole-genome “shotgun” sequencing starts by copying and 
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole 
genome; like it was fired from a shotgun)



Assembly

Assume sequencing produces such a large # fragments that almost 
all genome positions are covered by many fragments...

Reconstruct 
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT



Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct 
this



Assembly

Reconstruct this
From 
these

???????????????????????????????????

CTAGGCCCTCAATTTTT 
GGCGTCTATATCT 
CTCTAGGCCCTCAATTTTT 
TCTATATCTCGGCTCTAGG 
GGCTCTAGGCCCTCATTTTTT 
CTCGGCTCTAGCCCCTCATTTT 
TATCTCGACTCTAGGCCCTCA 
GGCGTCGATATCT 
TATCTCGACTCTAGGCC 
GGCGTCTATATCTCG 



What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them



What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.  
What makes one genome more likely than another?  
What constraints do we place on the space of solutions?



What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains 
all of them

✔



Shortest Common Superstring

Given: a collection,

Find*: The shortest possible genome (string), G, such

 , of sequencing S = {s1, s2, . . . , sk}
reads (strings)

that s1, s2, . . . , sk are all substrings of G

*for  reasons we’ll explore later, this isn’t actually 
a great formulation for genome assembly.

How, might we go about solving this problem?



Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that 
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Slide courtesy of Ben Langmead



Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modified overlap 
graph where each edge has 
cost = - (length of overlap)

SCS corresponds to a path that 
visits every node once, minimizing 
total cost along path

That’s the Traveling Salesman 
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

-1

Slide courtesy of Ben Langmead



Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS 
is NP-hard

Slide courtesy of Ben Langmead



Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness 
and NP-completeness, see Chapters 34 and 35 of “Introduction to 
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9 
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online: 
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring 
are all NP-hard

Slide courtesy of Ben Langmead



Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the 
decision version of) SCS is NP-complete. To do that, we 
must reduce a known NP-complete problem to SCS.

Given an instance I of a known hard problem, generate an 
instance I’ of SCS such that if we can solve I’ in polynomial 
time, then we can solve I in polynomial time. This implies that 
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Arbitrary 
instance of 

HP

Constructed 
instance of 

SCS

transformation 
(computable in poly time)

reverse transformation 
(computable in poly time)

solve SCS 
instance 

HP 
known to 
be NP-complete



Shortest Common Superstring
The fact that SCS is NP-complete means that it is unlikely 
that there exists any algorithm that can solve a general 
instance of this problem in time polynomial in n — the 
number of strings.

If we give up on finding the shortest possible superstring G, 
how does the situation change?



Shortest Common Superstring
There’s a “greedy” heuristic that turns out to be an approximation 
algorithm (provides a solution within a constant factor of the the 
optimum)

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9 Teng, Yao [23] 1993

2 5
6 Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63 Kosaraju, Park, Stein [15] 1994

2 3
4 Armen, Stein [1] 1994

2 50
69 Armen, Stein [2] 1995

2 2
3 Armen, Stein [3] 1996

2 25
42 Breslauer, Jiang, Jiang [5] 1997

2 1
2 Sweedyk [21] 1999

2 1
2 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2 Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23 Mucha [16] 2013

approximating compression

1
2 Tarhio, Ukkonen [22] 1988
1
2 Turner [24] 1989
2
3 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3 Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245 Ott [17] 1999

1 1
1216 Vassilevska [25] 2005

1 1
332 Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216 Ott [17] 1999

1 1
1071 Vassilevska [25] 2005

1 1
203 Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings

Golovnev, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

At each step, chose the pair of 
strings with the maximum 
overlap, merge them, and return 
the merged string to the 
collection.

Greedy conjecture factor of 2-
OPT is the worst case

Different approx. (not all greedy)



Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

ABBBA

AAAB

2
1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

ABBBA

AAAB

2
1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAABBBA superstring, length=7

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

  AAA AAB ABB BBB BBA 
Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB

11

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB

11

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB 
  AAABB BBBA

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal 
overlap.  Stop when there’s 1 string left.  l = minimum overlap. 

Input strings

Algorithm in action (l = 1):

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB 
  AAABB BBBA 
  AAABBBA

That’s the SCS

AAABBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB 

AAABBABBB superstring, length=9

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB 

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Note: approx. guarantee  
is on length of the superstring 

Actual result may be very different.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Take-home message:

We are interested in correct and efficient algorithms 
for solving well-specified problems.

We must be careful about how we pose the 
problems.

Actually, shortest common superstring is a rather 
poor model for sequence assembly, due to repeats 
and errors.


