Computer Science for
Biology (algorithmic primer)

UNIVERSITY OF

& MARYLAND

Overview of Quiz O

Note: | grabbed these stats last night, so the
distribution may have changed by this morning.

From among the following answers, select the one that best describes how

well you believe you know the topic of asymptotic analysis.

extremely well 3 respondents
. 16
fairly well
respondents
19
SO-SO
respondents

I've heard of it before, but don't really

4 respondents
know it h

13

new semester, who dis?
respondents

s -
30%
2o
s* -

25 %

<

<

Overview of Quiz O

From among the following answers, select the one that best describes how
well you believe you know the topic of dynamic programming.

extremely well

fairly well

SO SO

I've heard of it before, but don't really
know it

new semester, who dis?

2 respondents
10
respondents

28
respondents

14
respondents

4%

19 %

53%

26%

0%

I

Overview of Quiz O

From among the following answers, select the one that best describes how
well you believe you know the topic of computational complexity.

I'm pretty good at reductions, and am
confident proving new problems NP-
complete.

| understand the basic complexity classes,
and can follow reduction proofs.

| generally understand what different
complexity classes mean, but am not
comfortable with the topic.

| am not at all comfortable with basic
computational complexity topics.

2 respondents

25
respondents
18

respondents

8 respondents

4%

48 %

35%

15 %

l\/

Overview of Quiz O

Given adirected acyclic graph (DAG) G = (V,E), give a (tight) asymptotic
upper bound for the complexity of finding the shortest path between two
verticess,te V.

Key knowledge: Every DAG has a topological
order — a way you can visit the nodes so that
when you see a node, you've already seen every
node that has an edge to It.

Overview of Quiz O

Given adirected acyclic graph (DAG) G = (V,E), give a (tight) asymptotic
upper bound for the complexity of finding the shortest path between two
verticess,te V.

Key knowledge: Every DAG has a topological
order — a way you can visit the nodes so that
when you see a node, you've already seen every
node that has an edge to It.

One can find a topological order for a DAG in
inear O(V+E) time.

Given the topological order, shortest path can
easily be computed in O(V+E) time.

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined

similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.

C1\C2 H T
What is Pr(X=T, Y =T)?

H 0.25 0.05

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined

similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.

C1\C2 H T
What is Pr(X=T, Y =T)?

Prob of all possible n 023 0.05
events must sum to 1

(unitary) T 0.5 0.2

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined

similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.
C1\C2 H T

What is Pr(X = T)?
H 0.25 0.05

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.

C1\C2 H T
What is Pr(X =T)?
\ H 0.25 0.05 0.3
The marginal prob. | |
IS the sum over all
joint states where T— T 0.5 0.2 0.7

X has this value.

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined

similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.

Are the two coin flips statistically independent (say why or why not)?

Overview of Quiz O

| am given two coins, which | will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X =T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined

similarly for the second coin.

If you know that Pr(X=H,Y =H)=0.25and Pr(X=T, Y =H) =0.5 and
Pr(X=H, Y =T)=0.05.

Are the two coin flips statistically independent (say why or why not)?

No: X and Y are statistically independent iff
P(X=x,Y=y) = P(X=X)"P(Y=y)

Overview of Quiz O

The program grep allows one to quickly find a target pattern in a file. In
practice grep works quickly by using a combination of a well-engineered
Implementation, and an efficient algorithm for pattern search. Assume that
you are given a large string T representing the file and a string P
representing the pattern the user wishes to find.

What algorithm might you use to search for the pattern P in T ?

What is the running time of your algorithm in terms of [T | and |P | (the
lengths of strings T and P, respectively)?

Many possible answers, but an efficient algorithm will
be linear in the length of the input O(|T|+|P|), we will
learn about such algorithms next week.

What is Computer Science?

¢~

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.. THE RUNNING TIME IS O(p¥*nY)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN, I JUST
WANTED TO LEARN
HOW TO PROGRAM
VIDEO GAMES,

http://people.cs.pitt.edu/~kirk/cs2110/computer science major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

What is Computer Science?

Not actually simple to define constructively

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to
computation and its applications. It is the systematic study of the
feasibility, structure, expression, and mechanization of the methodical
procedures (or algorithms) that underlie the acquisition, representation,
processing, storage, communication of, and access to information” ...

*http://www.cs.bu.edu/AboutCS/WhatlsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

What is Computer Science”

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

't turns out that a major challenge in
bioinformatics will simply be determining how to
frame the computational problem corresponding
to a biological question in a well-posed and

meaningful way!

Assembly

Reads

oW,
1S R
VR |

Input DNA

Next 5 slides courtesy of Ben Langmead

How to assemble
puzzle without the
benefit of knowing
what the finished
product looks like?

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

(“Shotgun”refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy:

Fragment:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTIT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Assembly

Assume sequencing produces such a large # fragments that almost

all genome positions are covered by many fragments...

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
Reconstruct CTCGGCTCTAGCCCCTCATTTT
this TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

> GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

From these

Assembly

...but we don’t know what came from where

Reconstruct
this

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATT

TCTATATCTCGGCTCT
GGCTCTAGGCCCTCAT

TTT
'AGG
(TTTTT

CTCGGCTCTAGCCCCT

[CATTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

> GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

From these

Assembly

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG

e From
| GGCTCTAGGCCCTCATTTTTT
Reconstructthis o T TAGCCCCTCATTTT these

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT
TATCTCGACTCTAGGCC

GGCGTCTATATCTCG |
>PPPPPPPPPrPPPPlPPPrPrPPPPPPPPPPPPPPPPPP

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a collctmeq R, of sequengiaereads (strings)

Find: [ha-gemOme (string), G, that gefferaigd them

Not well-specified.
What makes one genome more likely than another?
What constraints do we place on the space of solutions?

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains
all of them

Shortest Common Superstring

- a collection, S = {s1,5s2,...,5;} , of sequencing
reads (strings)

Find*: The shortest possible genome (string), G, such
that si1,s9,...,s;, are all substrings of G

How, might we go about solving this problem?

*for reasons we’ll explore later, this isn’t actually
a great formulation for genome assembly.

Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,”it’s easy: just concatenate them

Example: S: BAA AAB BBA ABA ABB BBB AAA BAB

Concatenation: BAAAABBBAABAABBBBBAAABAB
’ 24 :

SCS5(S): AAABBBABAA

—10—

AAA
AAB
ABB
BBB
BBA
BAB
ABA
BAA

Slide courtesy of Ben Langmead

ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAAB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABABB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <— superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <— superstring 2

If S contains n strings, n! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest commo

Can we solve it?

Imagine a modified over

n superstring

ap

graph where each edge has

cost = - (length of overla

D)

SCS corresponds to a path that
visits every node once, minimizing

total cost along path

That's the Traveling Salesman AAA

Problem (TSP), which is NP-hard!

Slide courtesy of Ben Langmead

S: AAA AAB ABB BBB BBA

SCS5(S): AAABBBA

AAA
AAB
g
AAB SRA
5 -2
-1 -1\ \-1
~ >|ABB
-2
-1) 1
BBB 2 3BBA

Shortest common superstring

Say we disregard edge weights and >: AAA AAB ABB BBB BBA

just look for a path that visits all the SC5(5): AAABBBA
AAA

nodes exactly once AAB
That's the Hamiltonian Path problem: AEEB
NP-complete AAB BBA
Indeed, it's well established that SCS
is NP-hard

AAA > ABB

BBB >~ BBA

Slide courtesy of Ben Langmead

Shortest common superstring & friends

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Slide courtesy of Ben Langmead

Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the
decision version of) SCS is NP-complete. To do that, we
must reduce a known NP-complete problem to SCS.

an instance | of a known hard problem, generate an
instance |’ of SCS such that if we can solve |’ in polynomial
time, then we can solve | in polynomial time. This implies that
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

transformation
(computable in poly time) \

~

solve SCS
instance

| Arbitrary Constructed
instance of instance of

HP SCS
¥ reverse transformation _~" K/

(computable in poly time)

HP
Known to
be NP-complete

Shortest Common Superstring

The fact that SCS is NP-complete means that it is unlikely
that there exists any algorithm that can solve a general
instance of this problem in time polynomial in n — the
number of strings.

It we give up on finding the shortest possible superstring G,
how does the situation change?

Shortest Common Superstring

There's a “greedy” heuristic that turns out to be an approximation
algorithm (provides a solution within a constant factor of the the
optimum)

Different approx. (not all greedy)

ratio authors year

At each step, chose the pair of

: : : ximating SCS
strings with the maximum i —

Ovel’|ap, merge them, and return 38 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991
_ 23 Teng, Yao [23] 1993

the merged St”ng to the 2% Czumaj, Gasieniec, Piotrow, Rytter [§| 1994
CO”GC“OH 223 Kosaraju, Park, Stein [15] 1994
23 Armen, Stein [1] 1994

228 Armen, Stein [2] 1995

22 Armen, Stein [3| 1996

Greedy conjecture factor of 2- %3 Breslauer, Jiang, Jiang [3 HIT
, 25 Sweedyk [21] 1999

OPT IS the worst case 21 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
21 Paluch, Elbassioni, van Zuylen [18] 2012

22 Mucha [16] 2013

Golovney, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

Greedy shortest common superstring

AAB
) 2
1 T \\1
AAA 1 > ABB
2

1 2 1

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAB
5 2
1 T \\1
AAA 1 > ABB
2

1 2 1

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

A 4

BBB

ABB

Slide courtesy of Ben Langmead

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

ABBB

2 >BBA

Slide courtesy of Ben Langmead

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

ABBB

2 > BBA

Slide courtesy of Ben Langmead

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

ABBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAAB

ABBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAABBBA | «— superstring, length=7

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —

AAA AAB ABB BBB BBA AAB

AAA 1 -(ABB

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings — AAB
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA

AAA > ABB

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB > ABB

BBB 2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB > ABB

BBB 2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAAB 2 BB

> A
: 2
1 /

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAAB 2 BB

> A
: 2
1 /

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABB

1 2

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA
AAABBBA AAABBBA

That's the SCS

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA ‘A/AB ABB BBA BBB
\
AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA ‘A/AB ABB BBA BBB
\
AAAB ABB BBA BBB
\ A4
AAAB ABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA éAB ABB BBA BBB
\
AAAB ABB BBA BBB
\ "4

AAAB ABBA BBB
vV ¥

AAABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AA/AB ABB BBA BBB

\
AAAB ABB BBA BBB

\ 24

AAAB ABBA BBB

\ 24
AAABBA BBB

\ '4
AAABBABBB <«— superstring, length=9

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

Note: approx. guarantee
IS on length of the superstring
Actual result may be very different.

AAA AA{AB ABB BBA BBB
\
AAAB ABB BBA BBB
\ A4

AAAB ABBA BBB
\ 24

AAABBA BBB

\7 4
AAABBABBB <«——'superstring, length=9

AAABBBA <«— superstring, length=7

Greedy answer isn't necessarily optimal

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Take-home message:

We are interested in correct and efficient algorithms
for solving well-specified problems.

We must be caretful about how we pose the
problems.

Actually, shortest common superstring Is a rather
poor model for sequence assembly, due to repeats
and errors.

