
Computer Science for
Biology (algorithmic primer)

Overview of Quiz 0
Note: I grabbed these stats last night, so the
distribution may have changed by this morning.

Overview of Quiz 0

Overview of Quiz 0

Overview of Quiz 0

Key knowledge: Every DAG has a topological
order — a way you can visit the nodes so that
when you see a node, you’ve already seen every
node that has an edge to it.

Overview of Quiz 0

Key knowledge: Every DAG has a topological
order — a way you can visit the nodes so that
when you see a node, you’ve already seen every
node that has an edge to it.

One can find a topological order for a DAG in
linear O(V+E) time.

Given the topological order, shortest path can
easily be computed in O(V+E) time.

Overview of Quiz 0
I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

What is Pr(X=T, Y =T)?

C1\C2 H T

H 0.25 0.05

T 0.5 ?

Overview of Quiz 0
I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

What is Pr(X=T, Y =T)?

C1\C2 H T

H 0.25 0.05

T 0.5 0.2

Prob of all possible
events must sum to 1

(unitary)

Overview of Quiz 0

I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

What is Pr(X = T)?
C1\C2 H T

H 0.25 0.05

T 0.5 0.2

Overview of Quiz 0

I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

What is Pr(X = T)?
C1\C2 H T

H 0.25 0.05

T 0.5 0.2 0.7

0.3
The marginal prob.

is the sum over all

joint states where

X has this value.

Are the two coin flips statistically independent (say why or why not)?

I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

Overview of Quiz 0

Are the two coin flips statistically independent (say why or why not)?

I am given two coins, which I will flip simultaneously.

Let X = H be the event that the first coin comes up heads and X = T be
the event that the first coin comes up tails. Let Y = H and Y = T be defined
similarly for the second coin.

If you know that Pr(X = H,Y = H) = 0.25 and Pr(X = T, Y = H) = 0.5 and
Pr(X=H, Y =T)=0.05.

Overview of Quiz 0

No: X and Y are statistically independent iff
P(X=x,Y=y) = P(X=x)*P(Y=y)

The program grep allows one to quickly find a target pattern in a file. In
practice grep works quickly by using a combination of a well-engineered
implementation, and an efficient algorithm for pattern search. Assume that
you are given a large string T representing the file and a string P
representing the pattern the user wishes to find.

What algorithm might you use to search for the pattern P in T ?

What is the running time of your algorithm in terms of |T | and |P | (the
lengths of strings T and P, respectively)?

Overview of Quiz 0

Many possible answers, but an efficient algorithm will
be linear in the length of the input O(|T|+|P|), we will

learn about such algorithms next week.

What is Computer Science?

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

What is Computer Science?
Not actually simple to define constructively

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to
computation and its applications. It is the systematic study of the
feasibility, structure, expression, and mechanization of the methodical
procedures (or algorithms) that underlie the acquisition, representation,
processing, storage, communication of, and access to information* …

*http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

It turns out that a major challenge in
bioinformatics will simply be determining how to
frame the computational problem corresponding
to a biological question in a well-posed and
meaningful way!

Input DNA

Reads Reference genome

+

Assembly

X
How to assemble
puzzle without the
benefit of knowing
what the finished
product looks like?

Next 5 slides courtesy of Ben Langmead

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

Reconstruct
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct
this

Assembly

Reconstruct this
From
these

???????????????????????????????????

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.
What makes one genome more likely than another?
What constraints do we place on the space of solutions?

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains
all of them

✔

Shortest Common Superstring

Given: a collection,

Find*: The shortest possible genome (string), G, such

 , of sequencing S = {s1, s2, . . . , sk}
reads (strings)

that s1, s2, . . . , sk are all substrings of G

*for reasons we’ll explore later, this isn’t actually
a great formulation for genome assembly.

How, might we go about solving this problem?

Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Slide courtesy of Ben Langmead

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modified overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That’s the Traveling Salesman
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

-1

Slide courtesy of Ben Langmead

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Slide courtesy of Ben Langmead

Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

Slide courtesy of Ben Langmead

Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the
decision version of) SCS is NP-complete. To do that, we
must reduce a known NP-complete problem to SCS.

Given an instance I of a known hard problem, generate an
instance I’ of SCS such that if we can solve I’ in polynomial
time, then we can solve I in polynomial time. This implies that
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Arbitrary
instance of

HP

Constructed
instance of

SCS

transformation
(computable in poly time)

reverse transformation
(computable in poly time)

solve SCS
instance

HP
known to
be NP-complete

Shortest Common Superstring
The fact that SCS is NP-complete means that it is unlikely
that there exists any algorithm that can solve a general
instance of this problem in time polynomial in n — the
number of strings.

If we give up on finding the shortest possible superstring G,
how does the situation change?

Shortest Common Superstring
There’s a “greedy” heuristic that turns out to be an approximation
algorithm (provides a solution within a constant factor of the the
optimum)

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9 Teng, Yao [23] 1993

2 5
6 Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63 Kosaraju, Park, Stein [15] 1994

2 3
4 Armen, Stein [1] 1994

2 50
69 Armen, Stein [2] 1995

2 2
3 Armen, Stein [3] 1996

2 25
42 Breslauer, Jiang, Jiang [5] 1997

2 1
2 Sweedyk [21] 1999

2 1
2 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2 Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23 Mucha [16] 2013

approximating compression

1
2 Tarhio, Ukkonen [22] 1988
1
2 Turner [24] 1989
2
3 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3 Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245 Ott [17] 1999

1 1
1216 Vassilevska [25] 2005

1 1
332 Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216 Ott [17] 1999

1 1
1071 Vassilevska [25] 2005

1 1
203 Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings

Golovnev, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

At each step, chose the pair of
strings with the maximum
overlap, merge them, and return
the merged string to the
collection.

Greedy conjecture factor of 2-
OPT is the worst case

Different approx. (not all greedy)

Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

ABBBA

AAAB

2
1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

ABBBA

AAAB

2
1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAABBBA superstring, length=7

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

 AAA AAB ABB BBB BBA
Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA

1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA

That’s the SCS

AAABBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Note: approx. guarantee
is on length of the superstring

Actual result may be very different.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Take-home message:

We are interested in correct and efficient algorithms
for solving well-specified problems.

We must be careful about how we pose the
problems.

Actually, shortest common superstring is a rather
poor model for sequence assembly, due to repeats
and errors.

